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Abstract — We propose a framework for the design and 
development of component-based woodwind virtual 
instruments. Each functional part of the instrument is 
represented with an independent component, and can be 
created with different approaches, by unfamiliar 
constructors. Using the aforementioned framework, 
Virtual Zournas is implemented. The user can 
experiment with the instrument, changing its physical 
properties. Instrument control is performed via MIDI 
files or external MIDI devices.

I.

II.

INTRODUCTION

Music performers are always in search for greater 
possibilities in terms of artistic creation and expression. 
Such needs led to the development of Virtual Musical 
Instruments (VMIs). Even though they were initially 
designed for live performances, VMIs can find use in a 
plethora of applications, spreading from educational 
programs to virtual museums [1], [2], [3].

Until today, there have been few strictly predefined and 
autonomous frameworks for developing VMIs [4], [5].
Researchers study VMIs from different points of view, 
focusing either on the sound synthesis procedure [6], [7],
or on innovative means of gestural control and interaction 
interfaces [8], [9], [10]. Educational and “museum” 
applications center mainly on the photorealistic 3-
dimensional visual representation of the instrument [2],
[11]. Moreover, such systems do not permit the use of 
different methodologies for sound synthesis and 
visualization, and they don’t predict for a life cycle with 
independent designers and users, able to alter an existing 
VMI or build one from scratch. 

In this paper, we present a framework for the design 
and implementation of VMIs based on software 
components, which allows the collaboration among 
different developers with different approaches. We begin 
by analyzing sound synthesis by physical modeling and 
some reasons why we find it to be the most appropriate 
technique to use with VMIs. After showing how every 
musical instrument is composed of different functional 
parts (i.e. excitation, oscillating body, resonance body), 
which play their own roles in the sound production 
procedure, we proceed with the description of the 
framework. Each functional part of the instrument is 
represented with an independent component. Such 
components are linked together in order for the complete 
VMI to be constructed. Based on the proposed framework, 

Virtual Zournas is implemented. The appropriate 
components and a full use-case scenario are presented. 

PHYSICAL MODELING 

Physical models are based on mathematical models that 
can describe the physical acoustics of a real-world 
instrument. By describing its acoustical behavior with 
equations, we understand it better and we can simulate it 
better. As C. Roads states [12]: “a physical model 
embodies the Newtonian ideal of a precise mathematical 
model of a complicated mechano-acoustical process”.
That is, if it is likely to collect all the equations 
corresponding to sound generation and propagation and 
render them by computing means, then the sound output 
would have great resemblance with the one of the real 
instrument. 

It should be made clear however, that the main purpose 
of building physical models of musical instruments is not 
to simply replicate them. VMIs based on physical 
modeling provide the user with the ability to control them 
in a straightforward manner during the sound generation 
process, as well as during a live performance.  

Physical models are often described as musical “reality 
generators”, since they can develop forms that have 
nothing to do with reality. Thus, the real world can serve 
merely to inspire the creation of surreal sounds and 
instruments [12], [13].

The sound production process is quite similar in all 
acoustic instruments. An excitation sets an instrument 
part, the oscillating body, in periodic motion. The 
oscillation sets in motion other parts of the instrument, 
mostly described by the term “resonance body”. Finally, 
the secondary oscillations produce acoustic waves that 
travel through air and reach our ears. 

While analyzing the acoustic behavior of a musical 
instrument, attention should be given to all of its parts, 
even to those whose role in sound production is thought to 
be less profound or evident. Slides and valves in brass 
instruments, keys and tone-holes in woodwinds, the bridge 
in strings, are such examples.         

It is hence obvious, that a musical instrument can be 
considered to have different functional parts, each one 
having a different task in the sound production process. In 
this way, in order to design a physical model, it is a 
common procedure to focus on each of these parts 
separately. One must derive the equations that describe the 
acoustics of each part, build individual models for them 
and finally connect them to form the complete instrument. 
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It should also be possible to substitute the model of a 
part without having to change the model of the whole 
instrument, in the same way that a clarinet player can 
substitute the embouchure of his clarinet with having to 
buy a new clarinet. Such options are valid from the 
manufacturer’s point of view as well. A guitar maker 
could add an additional string, without putting up the 
entire guitar from the beginning. 

 In Fig. 1, examples of instrument parts and their 
acoustic behavior are given. By combining parts from 
each class, a well-known or even an original musical 
instrument occurs. Originality refers not only to the form 
of the instrument, as in the case of the saxophone 
introduction, but also to new ways of performing classical 
instruments. Performance is considered to be a part of the 
instrument itself, since it is strongly related with the 
excitation mechanism and the use of other parts. In fact, 
we should consider an instrument functional part as an 
acoustic procedure, not just as a material piece of the 
instrument.  

Fig. 1. Functional parts of musical instruments   

III.

A.

THE KTISIVIOS FRAMEWORK

VMIs
We define Virtual Musical Instruments (VMIs) as 

software applications that provide users with the means 
necessary to control, fine-tune, experiment and perform 
music with an as intuitive and natural way as possible. 
The basic parts of a VMI are a sound synthesis engine or 
synthesizer and a graphical user interface or a hardware 
control device.  

The music software industry has responded to user 
needs by providing a number of computer applications 
that can be used to develop, amongst other, VMI 
applications. The most popular of these applications use 
the famous visual patching paradigm to allow users to 
create synthesizers [14], [15], [5]. Creating a musical 
instrument in such environments involves fitting patches 
together in a graphical manner, mimicking hardware 
assemblage. Another popular approach involves using 
high-level musical languages that allow sound synthesis 
and control through programming [16]. Both of these 
approaches have proven very successful by assigning
development responsibilities on the users.  

There are however groups of users that are outside the 
scope of such applications; users that lack or should not 
have to possess expertise with programming, knowledge 
of sound physics or familiarity with digital signal 
processing; users that are profoundly involved in the 
music domain and should not be directly involved in the 
development process. We classify musical instruments 
craftsmen, performers, educators, musicologists and music 
composers as example groups of genuine “music” users.  

These groups of users have to use a software music 
environment whenever they want to operate a VMI, 
without having direct access to the VMI as an independent
application. Loading scripts, projects or configuration 
files, and in general, interacting with a VMI inside a 
software tool or environment forces the user to gain 
familiarity with the environment.  

This demand for familiarity and, ultimately, usage 
competence, is often troublesome and acts as an obstacle
and a deficiency factor for using a VMI in a natural and 
intuitive way. Even more, frustrating situations occur, 
provided that a user can handle a VMI as a developer, 
giving her full rights to manipulate source code and design 
of the VMI and the ability to potentially “break” it. The 
non-developer, “music” user should be protected from 
such situations and interface with the VMI directly as a 
rigid, compact entity.  

As far as software development in the music software 
industry is concerned, the dominant issues of reusability,
maintenance and ultimately cost-effectiveness, are 
present. Component based development [17], as an 
approach that successfully deals with such issues, is 
partially used in the music software domain. There are 
some add-on modular approaches, but still, these 
“expansion” modules are far from autonomous and 
depend heavily on being hosted by some application. It is 
definitely not possible to collect, compose and finally 
produce a complete application using such modules. Thus, 
the overbearing pattern of proprietary monolithic 
applications still applies in the music software domain, 
leading to an increased cost of products, as a result of poor 
reusability, backbreaking maintenance and evolution of 
software.

The choice of physical modeling as a sound synthesis 
technique is imperative, once someone decides to provide 
highly efficient, realistic sound synthesis. Although some 
software applications endorse physical modeling as a 
sound synthesis technique, none is devoted to it.  

We decide to take a different approach that will provide 
a clear distinction between users and developers. We 
present KTISIVIOS, a component-based framework that 
can be used for developing custom-made VMIs based on 
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physical modeling. We propose a development life cycle 
for KTISIVIOS that handles the distinction between users 
and developers in an effective, concise way. We move 
physical modeling a step beyond, by decomposing the 
holistic model of a single instrument into small, 
independent models of the parts of the instrument that 
interconnect and are replaceable, just as in the case of a 
real world musical instrument. 

B. Framework Description  
In this section we present KTISIVIOS, a component 

based framework for the design and development of 
VMIs. KTISIVIOS provides guidelines and tools for fast 
and costless implementation of flexible and optimized 
VMIs. Digital sound synthesis using physical modeling 
and musical instrument parts representation through 
software components constitute the main philosophy 
behind the framework. KTISIVIOS has an intrinsic object 
oriented philosophy and is implemented in C# using the 
Microsoft .Net framework. 

KTISIVIOS framework is developed according to 
specific requirements. The most important are: to be open 
regarding the number, type and control means of 
implemented VMIs, to allow the end-user to modify in 
real time the values of physical properties of the 
instrument represented by the VMI (e.g. shape and 
dimensions), with corresponding sound result, and to give 
the application the prospect to run distributed, that is to 
run on more than one computers, which communicate 
through network.      

We find KTISIVIOS to be a useful tool for a large user 
group, from common users who desire to exploit the 
musical potentials of computers to expert users with 
specific needs. Such expert users are researchers 
attempting to reconstruct antique or traditional musical 
instruments, contemporary performers, composers trying 
to produce original timbres, craftsmen and musical 
instrument manufacturers willing to hear the sound that a 
musical instrument produces before building it and 
students using it as a music education tool. 

The main feature of our framework is the modular 
design through component based architecture. Following 
the standardizations and specifications of KTISIVIOS, 
developers implement software components that simulate 
the acoustic behavior of independent musical instrument 
parts. It is also possible for a component to apply 
common liturgical functions for the VMI itself, such as 
load, save, help and exit functions. 

KTISIVIOS implements interfaces for each 
component’s structural parts. In object oriented 
programming, an Interface is a reference type and it 
contains only abstract members. Interface's members can 
be Events, Methods, Properties etc. But the interface 
contains only declarations for its members. Any 
implementation must be placed in the class that realizes 
them. Thus, component development becomes easier and 
more specific. The overall structure of every component 
is strictly specified and the developer (see III.C) must 
only inherit his classes from these interfaces and realize 
the abstract members according to his requirements.   

KTISIVIOS states that every VMI component is 
structured from the following parts: 

Graphical interface  

Controller
Physical model. 

In Fig. 2 we present the arrangement of these parts in a 
VMI component.   

Fig. 2. VMI Component and the arrangement of the internal parts 

Physical Model (Model) implements the real time 
algorithms that solve the mathematical equations, which 
describe the acoustical behavior of the corresponding part 
of the instrument. This element of the component is 
responsible for the digital sound synthesis process.  

It is also common, but not mandatory, for each 
component to provide a Graphical Interface (GI) to 
interact with the physical model, for configuration and 
control purposes in particular. We consider this option as 
default, as there are seldom cases where a component will 
not have even a minimal graphical interface. In our case, 
the main objective of the graphical interface is to publish 
the adjustable physical parameters that control the model 
to the user, who can interfere in the sound synthesis 
process by modifying these parameters.  

The controller is an essential part for every 
component. Its task is to interconnect the graphical 
interface with the physical model. It also supervises the 
communication process among the component it belongs 
to with other components.  

Inter-component communication in KTISIVIOS is 
specified through a messaging protocol. The 
communication layer of the framework is used to transfer 
messages between components. Every message signals 
events. These events are transmitted between components 
through a broadcasting system based on the Publisher-
Subscriber prototype.  

KTISIVIOS defines the form, syntax and semantics of 
these messages. To be more precise, every message must 
contain a human readable description of the event that 
signals (e.g. Blow_pressure, Temperature, Pluck). It must 
also contain timestamps and synchronization details, as 
well as the numerical values defining the magnitude of 
the event.  

Furthermore, extensibility of messages is of great 
importance and is supported by KTISIVIOS to allow 
transmission of messages containing extended 
information. This protocol draws inspiration from 
established protocols such as SKINI [18] and OSC [19].

 Remotability is another core feature of KTISIVIOS. 
It enables VMI synthesis with components stored in 
independent computational systems, connected through a 
network. VMI applications based on physical modeling 
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could be demanding in terms of computational resources, 
due to the simultaneous solution of complicated equation 
systems. Thus, the distributed operation of the application 
is extremely important. We have incorporated this 
functionality in KTISIVIOS using the .Net remoting 
mechanism. 

C. Product Life Cycle 
The effect use of our framework is based on a particular 

product development lifecycle that we propose. The 
fundamental roles and entities in this lifecycle, also shown 
in Fig. 3, are:  

Component Developers: They receive requests for 
developing VMI components that provide specific 
functionality and submit them to the Active 
Repository.  Development inside our proposed life 
cycle is bound by the specifications and 
guidelines defined by the framework KTISIVIOS 
and provided by the Active Repository.  
Integrators: They receive requests from end users 
for specific VMI products. Having clarified user 
requirements, integrators turn to the Repository to 
look for components that provide the requested 
functionality. After collecting the necessary 
components, they use tools provided by the 
framework to put together the separate 
components into a complete application. 
End Users: They are simple or expert users that 
request a VMI product from Integrators.  
Active Repository: It stores, validates and 
catalogues implemented components, while 
providing specifications and guidelines for 
component development. 

Fig. 3. Roles and product life cycle 

Following the proposed lifecycle, components that 
come from different software vendors and implement 
different physical modeling approaches for the 
corresponding instrument parts can incorporate in a 
reliable way. Thus, a component bank can be created 
corresponding to a real world instrument parts bank. End 
users, in collaboration with integrators, select the 
combination of components that will produce an 
integrated VMI application that satisfy their needs. The 
distributed functionality of KTISIVIOS enables the 
creation of higher order applications using remote 
components, offering possibilities such as creating Virtual 
Music Orchestras.

D. Framework Tools 
KTISIVIOS provides two separate tools for integration 

and execution of a VMI instrument, namely Integration 
Tool and Execution Tool.

The “Integration Tool” provides the integration 
environment, where components are represented by icons. 
Integrators connect to the Active Repository, browse 
through the implemented components and load the 
appropriate ones. Through the tool’s interface, they 
interconnect the VMI components and arrange their 
graphical interfaces, formulating step by step the final 
VMI application. Component connections are directed 
links, starting from the component that in general requires 
a service and ending to the component that provides the 
particular service. 

The Graphical User Interface (GUI) of the VMI is also 
designed through the Integration Tool. The interfaces of 
each component are arranged by will, and a “snapshot” is 
taken in order to store the current GUI instance. The 
stored snapshot will be the GUI of the VMI. 

The “Execution Tool” is the final product presented to 
the end users. It loads the components arranged with the 
integration tool, as well as the designed GUI, and simulates 
the corresponding real world instrument. 

Fig. 4. Framework tools and roles  
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IV.

A.

VIRTUAL ZOURNAS

In this section we demonstrate the implementation of 
Virtual Zournas, using KTISIVIOS and the proposed life 
cycle. In the following paragraphs, after giving some 
information on the zournas, we describe the developed 
components, their structure and functionality. Secondly 
we demonstrate the integration of Zournas from these 
components using the Integration Tool. Finally we 
experiment with the final product, presenting several use 
cases.

The Zournas 
The zournas is a traditional Greek double-reed 

woodwind instrument, and has a long history. It is also 
found throughout Europe, North Africa, Middle East, 
India and China with various names. It resemblances the 
shawm, the most widespread woodwind double reed 
instrument of the Middle Ages, which is considered to be 
the ancestor of the modern oboe [20].

As most woodwind instruments, it consists of two 
major parts, also shown in Fig. 5: the embouchure and the 
bore. The embouchure’s main part is double reed, which 
acts as a pressure controlled valve. Through a connector, 
which is covered with fiber, the embouchure connects to 
the instrument bore. The bore is conical, like the one of 
the oboe. The number of tone-holes is usually 7 and there 
are no keys or other mechanical parts. The bore ends up at 
a bell, whose flare varies greatly among the instruments 
found [20].

Fig. 5. Image of the zournas 

B.

1)

Building Components 
In order to implement Virtual Zournas, we begin with 

designing the components that correspond to the 
functional parts of the real-world zournas. It should be 
made clear that there can be many approaches for defining 
the parts that these components describe.  

Instrument functional parts correspond to acoustic 
procedures. Such procedures are by nature modular, in the 
sense that a single procedure can be described by partial 
ones. Likewise, an instrument part can be modular. For 
example, when one defines the “bore”, she could consider 
the “bell” either as part of the bore or as an individual part 
that connects with it. The “excitation”, “oscillating body” 
and “resonance body” are the most generic, since they are 
found in all instruments. The excitation mechanism for 
our case is blowing, the oscillating body is the double reed 
and the resonance body is the air column inside the bore. 

Moreover, there are different ways to describe an 
acoustic procedure. There are many physical models for 
the same part, even though each one can have different 
rate of success. In the same way, there are many 
approaches regarding a component. A “bore component” 
can enclose a “bell component” or not, can model the 
tone-hole behavior or not etc. 

 We continue by analyzing the components for our 
VMI. The first three apply to instrument parts, while the 
later two apply to useful VMI functions. 

The embouchure component 
As its name states, this component corresponds to the 

embouchure of the zournas. It’s most vital parts have to do 
with the physical model of the embouchure and are the 
mathematical equations describing double reed’s 
oscillation along with the air’s flow characteristics. The 
acoustical behaviour of double reeds is yet under study. In 
our approach we use the physical model presented by 
Almeida et al [21], adapted to measured physical 
properties of zournas’ reeds [20], [22].

In order to represent these equations in a computational 
system, a discrete time transformation is crucial. This step 
follows the directives of digital synthesis framework for 
wind instruments presented by Guillemain et al [23], [24],
[25]. We use the same framework for the discretization of 
the equations describing the other instrument parts and for 
the design of the overall digital synthesis algorithm. 

In TABLE I we present the equations and the 
corresponding physical variables describing the acoustical 
process in the embouchure. The model calculates the 
pressure at the end of the embouchure or the input of the 
bore when provided with external blowing pressure value. 

TABLE I.                                                                                                
EQUATIONS FOR ZOURNAS’S PHYSICAL MODEL

2
2

2 r m
d y t dy t A

y t p t p
Q dt mdt

y: displacement of two 
reeds

: resonance frequency 
Q: quality factor 
pr: reed pressure 
pm: blowing pressure 
m: mass of the reeds 

: reed surface

( )rS t y t w                          w: reed width 
Sr:reed opening  

r r r rq t S t C t aS t C t

q: flow 
: Vena Contracta 

parameter 
Cr: air stream speed

2
r m rC t p p t : air’s density

2

2
1
2b r

ra

q t
p t p t

S

: Bernoulli parameter 
Sra:Embouchure’s exit 
surface 

Through the component’s graphical interface the user 
can adjust the following parameters: 

Initial reed opening 
Reed width 
Diameter of the embouchure’s output 

2) The bore component
The bore component implements the physical model of 

the zournas’s bore, including the tone-holes and the bell. 
The model calculates the bore’s impedance, whose 
expression depends on its geometrical properties and the 
tone-hole lattice. 

The model calculates the external pressure exp  at the 
exit of the bore, provided with the pressure at the input of 
the bore (embouchure’s output) through the equation: 
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* *
ex b

d
p p

dt
q   (1),                                       

where *
bp and denote the dimensionless pressure and 

flow variables in the bore. Thus, the embouchure’s 
component output is the input for the bore component. 
Using Guillemain’s framework these equations are 
transformed in the discrete time domain. 

*q

The component’s graphical interface publishes to the 
user the following adjustable parameters: 

Bore diameter 
Bore length 
Bell diameter 
Bell flare

3)

4)

5)

C.

The excitation component 
The excitation mechanism, blowing for our case, is 

simulated through this component. The physical model 
describes the blowing procedure and drives the digital 
synthesis algorithm for the sound production. The 
algorithm feeds this value to the embouchure component’s 
input and initiates the sound synthesis procedure.  

Even though this component’s functionality precedes 
those of the embouchure and the bore we present it last, 
because it is natural for the user to fine tune the 
embouchure’s and the bore’s parameters, before exciting 
the instrument via blowing it. 

Since the entire sound synthesis algorithm is driven by 
this component, we choose it to handle the communication 
between the algorithm’s output and the computer’s sound 
system as well. In other words, it is responsible for 
streaming the physical model’s output (acoustic pressure) 
to the system’s soundcard, in order to listen to the sound.   

The graphical interface provides the user the option to 
adjust the blowing pressure and to fire up the sound 
synthesis procedure by pressing the specified button. 

The view component 
This component does not represent a functional part of 

zournas, but implements typical functionalities of 
computational applications like loading and saving 
configuration files, help, information, and application exit. 
Thus, a physical model is not implemented.  

The most vital part of this component is its graphical 
interface. Furthermore, it provides two different visual 
representations of the zournas, a 2-Dimensional and a 3-
Dimensional representation.  

The 3D-representation of zournas is developed in 
VRML. The user can examine zournas through the 3D-
model and adjust its physical characteristics using the 
computer’s input devices (e.g. mouse). The controller 
transfers the new values to the other components. The 
adjustable parameters are: 

Bore length 
Bore diameter 
Bell flare 
Point of view (visual parameter) 
Bore material (visual parameter) 

Using the 2D representation, the user can select several 
possible fingerings, by opening and closing tone-holes, 
using the computer’s mouse. The controller transfers the 

appropriate fingering values to the bore component, where 
the tone-hole model is implemented. 

The execution component 
This component implements functionalities for 

controlling Virtual Zournas and performing with it. To be 
more precise, it supplies Virtual Zournas with the function 
to play a melody from a MIDI file or to be controlled by 
an external MIDI device. MIDI messages are transformed 
into appropriate values for the parameters of the physical 
models. 

Integrating Virtual Zournas 
After implementing the aforementioned components, 

we use the Integration Tool in order to connect the 
components and design the GUI of the VMI, hence 
integrating the complete application. Initially, the five 
components are loaded to the Integration Tool. 
Afterwards, the communication paths amongst them are 
specified. This is accomplished using the tool’s graphical 
interface, simply by drawing lines between the 
components that interchange messages.  

Due to the form of the digital sound synthesis 
algorithm, the excitation component that drives the 
synthesis procedure connects with the embouchure 
component and the bore component. The view component 
is responsible for adjusting the parameters of the 
embouchure and the bore components. For that reason, it 
is connected with these components so that the 
appropriate messages are exchanged.

The execution component connects with the excitation, 
the embouchure and the bore components, in order to 
transmit the transformed MIDI messages. At this point, 
the VMI is almost finished. We arrange the overall 
graphical interface of the application, by selecting the 
“arrange GUI” option and place each component’s 
graphical interface in the position we wish to appear in the 
final application.  

Finally, we take a “snapshot” of the arrangement. The 
snapshot stores not only the designed GUI, but the 
interconnections among the components as well. In other 
words, the snapshot stores every action that has taken 
place in the Integration Tool, for the time being. Now, 
when the Execution Tool is run, the snapshot is loaded 
and we have Virtual Zournas on our hands, ready for use. 

Fig. 6. Components connected using the Integration Tool  
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D. Using Virtual Zournas 
The end user runs the Execution Tool in order to use 

Virtual Zournas. In the window appearing, one can see the 
instrument parameter value set, the excitation section, a 
2D image of the zournas, function buttons and menus. Let 
us now examine some use case scenarios that Virtual 
Zournas offers. 

Fig. 7. GUI for the Virtual Zournas 

1)

2)

Listening to isolated notes 
By running the execution tool for the first time, Virtual 

Zournas loads a default value set for the adjustable 
embouchure, bore and excitation parameters, described in 
paragraph IV.B. The user can set the values for these 
parameters using the computer’s input devices. These 
values must belong into a specific for every parameter 
value range, since the models cannot produce sound for 
any given values. The appropriate range, along with a full 
instruction set, is provided to the user with the help 
function. If a given value is off range, a warning message 
appears.

After adjusting the values of the parameters, the user 
can hear the sound result from the Virtual Zournas he just 
defined. First, he sets a value for the blowing pressure, in 
the excitation section. Then, by clicking the “Blow” 
button, sound is produced for 3 seconds, and can be heard 
provided a usual computer sound system (soundcard, 
speaker) is present. The sound corresponds to that 
produced from a real-world zournas with properties 
defined by the parameters’ values and all tone-holes 
closed. Of course, it is possible that the values describe a 
zournas entirely unknown to the real world.    

If the user finds the sound result appealing, he can save 
the parameter value set, in order to load it in later time, 
without having to re-set the values from scratch. Values 
are saved locally as an XML formatted file. We define 
these files as configuration files. Blowing pressure value 
is not saved, since it is considered to be a per 

Using the 3D replica 
By selecting the “3D visualization” menu, the 3D 

replica of zournas is activated. It is a highly detailed 3D 
VRML visual model of a real-world zournas. The user 
manipulates the model, turns it around, flips it over, 
changes the point of view etc, using the computer’s mouse 
and the slide-bar “Move”.

Moreover, she modifies the model’s features, described 
in IV.B.4), using slide-bars, and observes the visual model 
change accordingly. The values of parameters are shown 
in the lower part of the window. Apart from affecting the 
visual model, the values are also sent to the sound model’s 
components. In this way, the user “blows” again and 
listens to the sound produced from the zournas set up with 
the 3D interface. 

Fig. 8. 3D Visualization of the zournas 

3) Choosing fingering   
The 2D image of the zournas is located on the upper 

right part of the main GUI. The user selects a desirable 
finger by double-clicking over the tone-holes. Open holes 
appear black, while closed holes appear light brown. 

The fingering is confirmed by clicking on “Confirm 
Fingering” button, and the Virtual Zournas is ready to be 
blown. The sound result matches that of zournas with the 
current parameter value set and the confirmed fingering. It 
is worth mentioning that a fingering cannot be saved and 
loaded in the way a parameter value set can.  

Fig. 9. 2D replica of zournas for choosing fingering 

4) Playing a tune with the Virtual Zournas
After experimenting with sounds and fingerings, the 

user chooses to listen to a whole melody and not just 
isolated notes played. There are to ways to make Virtual 
Zournas carry a tune: by loading a MIDI file and by 
connecting external MIDI devices.  

By clicking on “Load MIDI File”, the user browses and 
loads a MIDI file. Frequency and MIDI messages are used 
by the sound production models, and the melody is played 
with the sound of zournas. The MIDI file must contain a 
monophonic melody, since the Virtual Zournas cannot 
produce more than one note simultaneously. 
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Perhaps the most interesting case is when the user 
connects an external MIDI device to control the Virtual 
Zournas and perform with it, in real-time. By selecting 
“Connect External Device”, a list of the computer’s MIDI 
devices connected to the user’s computer shows up and, if 
the external device is properly installed, it appears on it. 
By marking it and clicking “Start”, the user is ready to 
perform. Again, frequency and time MIDI messages are 
used for the sound production sequence. At the end of the 
performance, the connection is stopped by pressing the 
“Stop” button. 

V. CONCLUSIONS AND FUTURE WORK

Virtual Musical Instruments play a significant role in 
modern music technology applications. In this paper we 
presented KTISIVIOS, a component-based framework 
for developing VMIs based on physical modeling. By 
following the proposed development life cycle, reduced-
cost VMI applications can be provided to a broad range 
of ‘music’ users. Ease of customization per user, shorter 
development times, trivial maintenance and effortless 
upgradeability of VMI applications are some of the 
expected benefits of our approach. 

Virtual Zournas is the first VMI implemented under the 
proposed framework. Further research will include 
improvement of the physical model of zournas, and an 
improved GUI for Virtual Zournas. Hopefully, many 
components for various instrument parts will be 
developed, and the example of Virtual Zournas will be the 
start point for a series of VMIs designed using 
KTISIVIOS.  
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